
Object Detection for Identifying Traffic Congestion (Using IBM
Developer Tools)

Balsharan Bedi, Eisa Adil, Sami Ali Choudhry, Shiv Sondhi
School of Computer Science

University of Windsor
Windsor, Canada

(bedib, adile, choud116, sondhis) @uwindsor.ca
110010312, 110012666, 105187035, 105216319

Abstract— Over the years, cities have gotten busier and very
often we find ourselves searching for time to complete tasks or
fulfill responsibilities. Being stuck in a traffic jam is the last
thing we want interrupting our busy schedules. Despite several
large highways and better planned cities, traffic congestion
still remains a problem in major cities around the world.
Not only is it annoying, but can also cause inconvenience to
services like ambulances, fire trucks and law-enforcement.
Additionally, traffic jams can be hugely detrimental for the
air quality of a city and especially the residents who live near
major roadways.

In this project, we use deep learning techniques for object
localization and count the number of objects that have been
detected. We focus on detecting cars and aim to provide some
statistics on traffic buildup and the amount of vehicles that
go past a particular junction in a given period of time. Our
implementation uses a lightweight architecture and convolution
model that enables it to run on real-time video streams as well
as on static images. We made use of tools available on the
IBM Developer network - like IBM Cloud services and IBM’s
Watson API.

I. INTRODUCTION

To achieve our aim of real-time object detection and count-
ing cars passing through a given section of the road, we have
made use of the Watson Machine Learning API and IBM
Cloud storage services [1]. To facilitate the user’s interaction
with our system, we have created a web application that
takes a video as the input and counts the number of cars
detected in that video. IBM’s Developer tools allowed us to
quickly train our deep learning model and store it on the
cloud. The Watson ML API also provides architectures that
have been pre-trained on larger and more general datasets
like ImageNet and Microsoft COCO, which enables us to
fine-tune the pre-trained models on car-specific data. The
model we have selected is pre-trained on the MS COCO
dataset for object detection. It can detect up to 80 different
objects in images[3]. These IBM tools helped us manage and
save time and allowed us to learn about the available deep
learning architectures for our task and find the best fit for
our use-case.

The application can be used in several useful ways. In
areas where there is high traffic congestion, it can be used
for statistical analysis and to generate traffic data. It can

also be useful to count cars stranded in a natural disaster
for quick relief. With slight modifications, our application
can be used in cases such as counting the number of
vehicles that drive past a red light or stop sign; identifying
speeding cars and can help engineers from other disciplines
make decisions on things like the number of lanes a
highway should have, traffic signal timings and the number
of turning lanes an intersection should have. Measuring
traffic volume is an amazingly important task and with
slight modifications to our code we can expand detection
and counting to other vehicles and pedestrians as well.
All in all, the future scope for this application is tremendous.

In the subsequent sections we discuss our project in more
detail. Section II describes the data that we have used to train
the model, Section III describes our methodology and how
we used the IBM tools. After these sections we discuss the
model parameters and the training process. We clarify why
we have selected the models we did and give some details
on the deep learning architecture used. Finally in Section V,
we describe the process of building the web interface for our
application and sign off with some thoughts on future work.

II. DATA
A. DataSet

The major contribution of the data set comes from Pexels
[2] which is a stock image and video database. It uses a
large chunk of free-to-download images of many objects and
videos of many scenes. We found a number of generalized
data (image and video) which we refined by manually
filtering out redundant videos and images. We chose to use
only video data to train our model since many images had
plain backgrounds, had a close-up shot of the car, or showed
only interiors of cars.

Once we had the videos, we proceeded by firing the
required components in them which in this case is the
cars. Later, we trained the model on this annotated video
data as per parameters which will help in achieving the
most accurate count of the cars. In order to achieve better
results and make our model more robust, we used videos
having different perspectives of camera, which are detailed
as follows:

1



1) Close-up View: The close-up view will be used in
order to obtain the information of incoming cars and detect
important features which are needed to train the data. It
shows only the front-view of cars and all cars were clearly
visible.

Fig. 1. Close-up View

2) Eagle-eye View: This view will be used in order to
obtain the information of incoming and outgoing cars, the
major goal is to contribute in the counting of fast moving cars
and detect cars from their top-views. The cars in this view
are also generally smaller due to the height of the camera.

Fig. 2. Eagle-eye View

3) Side View: This view of the camera majorly contributes
to help align and adjust as per different orientations. It helps
the model detect cars from their side-view. Since it captures
traffic moving in both directions, it helped the model learn
features on both sides of the cars.

Fig. 3. Side View

III. METHODOLOGY

Our aim is to build a web application in which a custom
model is used that detects cars. The first step in our process
was to find the data as described in Section II. Once

downloaded, IBM Cloud Object Storage was used to store all
the training data. Although we used video data for training,
the data was stored as frames of images in the cloud. After
storing the data, the Watson Machine Learning model was
trained on the data to fine-tune it to our needs. For the sake of
experimentation, we ran the model without any fine-tuning
and verified that it works anyway. However, retraining the
model on our video data produced much better results in
terms of detection accuracy and stability of the bounding
box.

To train the model, we had to download the Watson
Command Line Interface (CLI) or Cacli for short. Cacli was
used to interface with the server on which our model was
being trained. The progress can also be tracked using a GUI
on the IBM Developer Dashboard which lets you track the
cloud instances you are running. Training on the cloud did
not take too long thanks to IBM’s powerful servers. Once
trained, the model was downloaded and connected to the
web application using a NodeJS library provided by IBM.
This helped us run the model on real time videos for object
detection on the downloaded model without the need to make
API calls each time for object detection.

Once we verified that our model could successfully detect
and localize cars from videos in real-time, we worked on the
counting logic. Although this seems like a trivial task, we
were faced with several roadblocks. For instance, our model
breaks down each video into its constituent frames and makes
predictions on each frame - therefore, simply counting the
number of objects detected is not a working solution because
it will repeatedly count the same object. We explored a few
solutions which are discussed later in the report.

A. Workflow

Figure 4 shows the workflow of our process discussed
above with the legend given below. It flows from the right
to the left.

Fig. 4. Project Workflow

1) Store the training images (video frames) on IBM Cloud
Object Storage.

2) The Watson Machine Learning model accesses the
training data stored in the cloud for training and the
trained model is stored back on Cloud Object Storage.

3) The trained model is glued to the web application. A
library created by IBM helps us in making inferences
on the trained model within our web application.

2



4) Live stream of traffic or recorded video is streamed
to the web application in real time to perform object
detection.

5) Car counting functionality is implemented in the web
application using JavaScript.

B. Preparing the Training Data

For the Watson Machine Learning model to be trained
effectively, the data of images or videos must be prepared
using annotations. In order to accomplish this task, we used
the Cloud annotations that simplified the task of creating
annotations. In this process, we simply uploaded a training
video to the annotations interface. The video was split into
many frames and each image had to be associated with
annotations. For the first 50-80 frames, we manually drew
bounding boxes around cars using tools provided in the
interface. An example of this can be seen in Figure 5.

After annotating around 50-80 images, the annotations tool
learns to find the objects we are detecting and automatically
created the bounding boxes for the rest of the frames.
After going through the automatically annotated images and
making changes wherever necessary, our annotated data was
ready.

One thing to note is that the training images must resemble
the testing images - they should be similar in some ways.
This is so that the model learns valuable features and can
perform well during the test phase. Of course, you can
never be sure of how the test data is going to look; so care
must be taken to include as much variation as possible to
the training data. After generating annotations, the Watson
Machine Learning API performs some pre-processing steps
on the data. This pre-processing usually depends on the
hyperparameters of the model being used. In our case, the
training images are resized to 300x300 pixels as this is the
requirement of our MobileNet ConvNet.

Fig. 5. Annotating images / video frames

C. Creating and Training the ML Instance

Our Watson Machine Learning model was built using the
TensorFlow framework. An instance of the ML model was
created in the cloud using the IBM Cloud Dashboard. Now,
a model is ready and available in the cloud, and needs to
be trained on our training data. As mentioned, in order to

train the model, we used the Cloud Annotation CLI (cacli).
The major advantage of using the SSD architecture with
MobileNet is that the run-time is very low and accuracy is
only partially worse than the state-of-the-art - this makes it
ideal for use in web and mobile applications. After the model
is trained, it can either be downloaded or used directly in the
web application.

More information about the SSD architecure and Mo-
bileNet is provided in Section IV but to summarise the
reasons for our choice; they solve two major problems with
traditional deep learning architectures: slow speed and high
amount of computation required.

D. Creating a Web-Interface for the Model

Once the model was trained, we first downloaded it to our
local system to save a copy of the model and maybe use
it in a server-side application later. For our current project,
we created a web-page to demonstrate the working of our
model. On the web-page, a video can be played and the cars
will be detected in real-time. To use the fine-tuned model
in the web-application, IBM Cloud Annotations provides a
NodeJS library to connect the downloaded model instances
with the React web-interface. This library helps us infer the
model and draw boxes on the car for object detection. The
car counting functionality is then implemented depending on
the geometric position of these boxes.

IV. TRAINING PROCESS

The Single-Shot Detector (SSD) [4] is a object detection
architecture that is able to detect objects in an image in a
single-shot. This is as opposed to region-proposal networks
like the R-CNN family that use a two-shot approach. In the
SSD, a Convolutional Neural Network (CNN) is first used
to generate a feature map of the input image. A 3x3 sliding
window approach is used at different levels of the feature
map generation process to detect objects in the image with a
certain confidence. Applying the sliding window at different
levels ensures that the object can be found at different scales
and sizes.

The CNN architecture used in our model is MobileNet.
This choice of CNN architecture is lightweight and al-
lows the model to be run on mobile devices and in web-
applications. MobileNet uses depthwise convolutions fol-
lowed by pointwise convolutions which are together called
a depthwise separable convolution block. The depthwise
convolutions apply convolution kernels across each channel
of the image separately. The output of each depthwise
convolution in MobileNet is always equal to the number of
input channels, i.e. the convolution operation produces just
one activation map per channel. The pointwise convolution is
a normal convolution operation using a 1x1 kernel. This can
be used to increase or decrease the number of channels by
outputting a weighted sum across channels. Together, they
produce the same effect as a normal convolution but with
lesser computational cost.

There are two versions of MobileNet available, the object
detector that we selected uses V1.0 which works in the way

3



described above. The newer version makes some modifica-
tions to the above process with only little improvements in
accuracy.

Fig. 6. Plotting loss throughout training - 1

A. Loss Function

The model uses a multi-task loss function. This means
that the loss function aims to optimize two objectives -
the confidence of the object (car) being present in the 3x3
window, and a regression loss (L2-norm) for the bounding-
box co-ordinates. Therefore the final loss value reflects the
performance of the model in:

• Detecting a car in the image, and
• Generating a bounding box that correctly bounds the

car.
The multi-task loss function will give one common metric
that measures both aspects.

Figures 9, 7 and 8 show the decrease in loss over 500
steps while training our model for the first epoch.

Fig. 7. Plotting loss throughout training - 2

Fig. 8. Plotting loss throughout training - 3

B. Transfer Learning

As mentioned, the model described at the top of this
section was already trained on the Microsoft COCO dataset
for the object detection task. This enabled the model to detect
upto 80 objects in images and videos. For our purpose we

decided to further fine-tune the pre-trained model to teach it
features specific to our use-case of detecting cars. Since the
model was pre-trained on an extensive database of annotated
images, the model accuracy was already acceptable to begin
with. However, the accuracy improved satisfactorily after
further training on our own data. We trained the model twice
(2 epochs) with 500 steps per epoch.

V. CREATING THE USER INTERFACE

The user interface for this web application was developed
using React, which is a JavaScript library that is used to build
Single Page Applications (SPA) using the MVC paradigm. Its
advantage is that the components in the web application can
be updated dynamically with relative ease [5]. React renders
on a NodeJS server, and therefore works universally.

After the model is trained, a model file consisting of the
weights and biases of the CNN is extracted. This model is
saved and stored in the directory of the web application [6].

The IBM Cloud Annotations framework provides a
NodeJS library that can be used to connect the downloaded
model to the web application. This helps us in making
inferences on the trained model within the application. It
takes a frame-by-frame input of images in which there are
one or more cars, and then returns the dimensions and
position of the region in which a car is found. We then
draw boxes around this region for visualization in our web
interface.

We then implement the functionality to count cars within
our web application. It takes either a live stream or recorded
video as input, passes it to the IBM library to return box co-
ordinates, and then we visualize the car boxes and display
the number of cars as output. This helps us in performing
real time object detection and car counting on a road.

Cars are counted by selecting a region in the input stream,
in which if a car passes through, it gets counted to the total.
This works in a similar fashion to a toll gate, meaning that
when a car passes through a specific range of co-ordinates
of the stream canvas, we count it as a car that has passed
through. This helps in counting a car only once, rather than
at each frame multiple times.

After the car is counted, we increment a counter variable
that is defined in the JavaScript Document Object Model.
This variable is displayed immediately upon change using
React’s dynamic components. This gives the illusion that the
cars are being counted as they pass through our selected
region in the video stream. This count is then displayed on
the web page as its being updated after each passing car.

VI. FUTURE WORK

The final count method of our application has an error
rate of less than 10% - out of 50 cars on the road it misses
anywhere between 3 to 5 cars. We have ideas for improving
this even further and plan to follow up on that to increase
the counting accuracy.

In the task of detection, the model performs well for
several videos that were presented to it. Most cars are
detected with high confidence too.

4



Fig. 9. React Web Application for counting the cars that pass through a
region in the video stream

For localization, our model again does a good job. Al-
though some cars are detected and localized much later into
the video, every car is localized with a bounding box at least
once while it is visible in the frame. Our aim for the future
is to improve on these and some other minor issues with the
program, such as lag.

Further, we can try experimenting with different combi-
nations of object localization methods, ConvNets and model
hyperparameters to see what works best for us.

Apart from improving the performance of our implemen-
tation, we could also extend functionality to count cars that
run a red light or stop sign; count the number of say, red cars
or trucks on a road etc. Traffic data, especially the volume
of traffic in an area is useful for civil engineers because it
helps them make better decisions while building roads or
during redevelopment projects. We are open to new ideas
and extending our project into other domains.

For the user interface, we plan on making an interactive
and user-friendly dashboard that provides metrics such as
number of cars passed through in real time. We also intend on
making this dashboard cross-platform, so that this application
can be used by, for example, a traffic police through a mobile
phone.

REFERENCES

[1] “Introduction,” Cloud Annotations. [Online]. Available:
https://cloud.annotations.ai/workshops/object-detection/index.html.
[Accessed: 29-Feb-2020].

[2] "Vehicles On Highway At Fast Speed" [Video],
https://www.pexels.com/video/vehicles-on-highway-at-fast-speed-
2431853/

[3] “Object Detector,” IBM Developer. [Online]. Available:
https://developer.ibm.com/exchanges/models/all/max-object-detector.
[Accessed: 29-Feb-2020].

[4] D. Impiombato et al., “SSD: Single Shot MultiBox Detector Wei,”
Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers,
Detect. Assoc. Equip., vol. 794, pp. 185–192, 2015.

[5] P. Krill, P. Krill, and InfoWorld, “React: Making faster, smoother
UIs for data-driven Web apps,” InfoWorld, 15-May-2014. [Online].
Available: https://www.infoworld.com/article/2608181/react–making-
faster–smoother-uis-for-data-driven-web-apps.html. [Accessed: 29-
Feb-2020]

[6] “Model deployment.” [Online]. Available:
https://dataplatform.cloud.ibm.com/docs/content/DO/WML/_
Deployment/ModelDeployment.html. [Accessed: 29-Feb-2020]

5


	INTRODUCTION
	DATA
	DataSet
	Close-up View
	Eagle-eye View
	Side View


	METHODOLOGY
	Workflow
	Preparing the Training Data
	Creating and Training the ML Instance
	Creating a Web-Interface for the Model

	TRAINING PROCESS
	Loss Function
	Transfer Learning

	CREATING THE USER INTERFACE
	FUTURE WORK
	References

